равномерное ускорение - definition. What is равномерное ускорение
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

СОСТАВЛЯЮЩАЯ УСКОРЕНИЯ ТОЧКИ ПРИ ДВИЖЕНИИ ПО КРИВОЙ, НАПРАВЛЕННАЯ К ЦЕНТРУ КРИВИЗНЫ
Нормальное ускорение; Осестремительное ускорение
  • Разложение ускорения <math>\mathbf a(t)</math> на тангенциальное <math>\mathbf a_\tau</math> и нормальное <math>\mathbf a_n</math> (<math>\mathbf n</math> — единичный вектор нормали)

УСКОРЕНИЕ         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, СКОРОСТЬ ИЗМЕНЕНИЯ СКОРОСТИ
Мгновенное ускорение; Линейное ускорение
1. В физике: величина возрастания скорости движения в единицу времени.
Единица ускорения.
2. см. УСКОРИТЬ
, -ся.
УСКОРЕНИЕ         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, СКОРОСТЬ ИЗМЕНЕНИЯ СКОРОСТИ
Мгновенное ускорение; Линейное ускорение
величина, характеризующая быстроту изменения вектора скорости точки по его численному значению и направлению. При прямолинейном движении среднее ускорение равно отношению приращения скорости ?v к промежутку времени ?t, за который это приращение произошло: ? = ?v/?t. Ускорение прямо пропорционально силе, действующей на точку, и обратно пропорционально массе точки. Ускорение - вектор, направление которого совпадает с направлением вектора силы. При криволинейном движении ускорение точки слагается из касательного и нормального ускорений.
Ускорение         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, СКОРОСТЬ ИЗМЕНЕНИЯ СКОРОСТИ
Мгновенное ускорение; Линейное ускорение

векторная величина, характеризующая быстроту изменения скорости точки по её численному значению и по направлению. При прямолинейном движении точки, когда её скорость υ возрастает (или убывает) равномерно, численно У. , где - приращение скорости за промежуток времени . В общем случае вектор У. равен первой производной от вектора скорости υ по времени: ; он направлен в сторону вогнутости траектории точки и лежит в соприкасающейся плоскости.

Проекции У. на прямоугольные декартовы оси координат Oxyz равны первым производным от проекций скорости или вторым производным от координат точки по времени: , , . При этом модуль У. . Проекции У. На касательную и главную нормаль к траектории называют соответственно касательным (тангенциальным) ωτ и нормальным (центростремительным) ωn У.; они определяются равенствами: , , где υ - численная величина скорости, ρ - радиус кривизны траектории в соответствующей её точке.

При этом Касательное У. характеризует изменение скорости точки по её численной величине, а нормальное У. - по направлению.

У. свободной материальной точки связано с её массой m и действующей силой F равенством mω = F (второй закон Ньютона). Размерность У. LT-2.

Об У. точек вращающегося тела см. Вращательное движение, Угловое ускорение.

Лит. см. при ст. Кинематика.

С. М. Тарг.

Физиологическое действие ускорения. По характеру воздействия на организм различают линейное ударное У. (время действия ≤ 1 сек, 10 g/сек), линейное длительно действующее У. (время действия ≥ 1 сек, 10 g/сек), а также угловое У. В авиационной и космической медицине для обозначения "возросшего веса тела" (вследствие У.) используется термин "перегрузка".

Наибольшим линейным ударным У. (ЛУУ) человек подвергается при падениях, авариях на транспорте, при аварийной посадке самолёта или космического корабля, при катапультировании и т.д. Основной неблагоприятный патофизиологический эффект ЛУУ сводится к нарушению целостности органов и тканей (позвоночник, череп, внутренние органы). Переносимость ЛУУ, направленных перпендикулярно к продольной оси тела, примерно в два раза выше, чем направленных вдоль позвоночника (30-40 g и 15-20 g соответственно). В процессе эволюции у человека сформировались некоторые специфические механизмы защиты от ЛУУ (амортизационные свойства костно-опорного аппарата, система подвески внутренних органов и т.п.).

Выраженность неблагоприятного эффекта линейного длительно действующего У. (ЛДУ) зависит от величины У. и его направления относительно тела человека. Чем более вектор ЛДУ приближается к продольной оси тела и направлению основных магистральных кровеносных сосудов, тем выраженное нарушения кровообращения, связанные с перераспределением крови под влиянием возросшего гидростатического давления. Наихудшим образом переносятся У., приводящие к повышению кровенаполнения сосудов головы. Легче всего человек переносит этот вид У., когда его вектор составляет с продольной осью тела угол в 75-80° (см. рис.). Это условие реализуется на космических кораблях типа "Союз" и "Аполлон". Наибольшим ЛДУ в современных условиях человек может подвергаться при манёвренном полёте на скоростном самолёте или при полёте космического корабля по баллистической траектории. С ЛДУ в процессе эволюции человек практически не встречался. Переносимость этого воздействия определяется общими, неспецифическими механизмами приспособления к неблагоприятным факторам внешней среды. При вращательных движениях возникают угловые У., которые оказывают специфическое влияние на Вестибулярный аппарат, а при определённых величинах могут вызвать явления, характерные для ЛУУ и ЛДУ.

Для повышения переносимости У. применяют различные технические средства, обеспечивающие сохранение оптимальной позы и положения человека относительно вектора У., снижение величины У. и скорости его нарастания, уменьшение эффекта перераспределения крови в организме (амортизационные, индивидуально моделированные кресла, привязные ремни, защитные шлемы, противоперегрузочные костюмы).

Лит.: БарерА. С., Проблемы ускорений в космической физиологии, "Космическая биология и медицина", 1967, в. 1; Сергеев А. А., физиологические механизмы действия ускорений, Л., 1967; Краткий справочник по космической биологии и медицине, 2 изд., М., 1972; Основы космической биологии и медицины. Совместное советско-американское издание, т. 2, кн. 1, М., 1975.

А. С. Барер.

Время переносимости человеком длительно действующих ускорений в зависимости от их величины и направления. Р - доверительный интервал для вероятности 0,95.

ويكيبيديا

Центростремительное ускорение

Центростреми́тельное (норма́льное) ускоре́ние — составляющая ускорения тела, характеризующая быстроту изменения направления вектора скорости (вторая составляющая, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, с чем и связан термин. Обозначается символом, выбранным для ускорения, с добавлением значка «нормальное»: a n {\displaystyle {\vec {a}}_{n}} (реже w n {\displaystyle {\vec {w}}_{n}} ); в системе СИ измеряется в м/с2.

Пример движения с ненулевым центростремительным ускорением — движение по окружности (в таком случае a n {\displaystyle {\vec {a}}_{n}} направлено к центру окружности).

В классической механике нормальное ускорение вызывается компонентами сил, направленными ортогонально вектору скорости. Например, движение космического объекта на орбите характеризуется центростремительным ускорением, вызванным гравитацией. Составляющая суммы сил, обусловливающая наличие нормального ускорения, называется центростремительной силой. Связанное понятие для неинерциальных систем отсчёта — центробежная сила.

Осестремительное ускорение, рассматриваемое в случаях вращения тела вокруг оси, в проекции на плоскость, перпендикулярную оси, предстаёт как центростремительное.

What is УСКОРЕНИЕ - definition